Biorthogonal Rational Functions and the Generalized Eigenvalue Problem
نویسندگان
چکیده
منابع مشابه
A generalized eigenvalue problem for quasi-orthogonal rational functions
In general, the zeros of an orthogonal rational function (ORF) on a subset of the real line, with poles among {α1, . . . , αn} ⊂ (C0 ∪ {∞}), are not all real (unless αn is real), and hence, they are not suitable to construct a rational Gaussian quadrature rule (RGQ). For this reason, the zeros of a so-called quasi-ORF or a so-called paraORF are used instead. These zeros depend on one single par...
متن کاملRational and radical fixed point functions for the eigenvalue problem and polynomials
The derivation and implementation of many algorithms in signal/image processing and control involve some form of polynomial root-finding and/or matrix eigendecomposition. In this paper, higher order fixed point functions in rational and/or radical forms are developed. This set of iterations can be considered as extensions of known methods such as Newton’s, Lagurre’s and Halley’s methods and can...
متن کاملElliptic Integrable Systems Padé Interpolation Table and Biorthogonal Rational Functions
We study recurrence relations and biorthogonality properties for polynomials and rational functions in the problem of the Padé interpolation in the usual scheme and in the scheme with prescribed poles and zeros. The main result is deriving explicit orthogonality and biorthogonality relations for polynomials and rational functions in both schemes. We show that the simplest linear restrictions in...
متن کاملEfficient use of the Generalized Eigenvalue Problem
We analyze the systematic errors made when using the generalized eigenvalue problem to extract energies and matrix elements in lattice gauge theory. Effective theories such as HQET are also discussed. Numerical results are shown for the extraction of ground-state and excited B-meson masses and the ground-state decay constant in the static approximation.
متن کاملGeometric Invariant Theory and Generalized Eigenvalue Problem
Let G be a connected reductive subgroup of a complex connected reductive group Ĝ. Fix maximal tori and Borel subgroups of G and Ĝ. Consider the cone LR(G, Ĝ) generated by the pairs (ν, ν̂) of dominant characters such that Vν is a submodule of Vν̂ (with usual notation). Here we give a minimal set of inequalities describing LR(G, Ĝ) as a part of the dominant chamber. In way, we obtain results about...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1999
ISSN: 0021-9045
DOI: 10.1006/jath.1999.3339